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Abstract. This study uses representational similarity-based neural decoding to test whether semantic informa-
tion elicited by words and pictures is encoded in functional near-infrared spectroscopy (fNIRS) data. In experi-
ment 1, subjects passively viewed eight audiovisual word and picture stimuli for 15 min. Blood oxygen levels
were measured using the Hitachi ETG-4000 fNIRS system with a posterior array over the occipital lobe and a left
lateral array over the temporal lobe. Each participant’s response patterns were abstracted to representational
similarity space and compared to the group average (excluding that subject, i.e., leave-one-out cross-validation)
and to a distributional model of semantic representation. Mean accuracy for both decoding tasks significantly
exceeded chance. In experiment 2, we compared three group-level models by averaging the similarity structures
from sets of eight participants in each group. In these models, the posterior array was accurately decoded by the
semantic model, while the lateral array was accurately decoded in the between-groups comparison. Our findings
indicate that semantic representations are encoded in the fNIRS data, preserved across subjects, and decod-
able by an extrinsic representational model. These results are the first attempt to link the functional response
pattern measured by fNIRS to higher-level representations of how words are related to each other. © 2017 Society of

Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.NPh.5.1.011003]
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1 Introduction
Multivariate statistical analyses for neuroimaging data have
provided a new window into the contents of neurocognitive rep-
resentations. Using multivariate pattern analysis (MVPA), cog-
nitive neuroscientists can decode functional brain responses
into signals of theoretical significance, such as representational
models of word meaning or visual perception. This decoding is
achieved by comparing the distributed neural response (that is,
the multivariate pattern) to an analogous theoretical model. Such
an approach was first used for decoding the meanings of words
by Mitchell et al.,1 who used a semantic model based on word
co-occurrence frequencies to decode the meanings of concrete
nouns from adult subjects using functional magnetic resonance
imaging (fMRI). MVPA studies have demonstrated that neural
activity encoding task-relevant information is both broadly dis-
tributed across the cortex and decodable into distinct, localizable
components.2–4 Thus, recent fMRI research has confirmed the
utility of separable components of the neural response to classes
of stimuli, contrasting representational models derived from
computer vision, distributional (corpus-based) semantics, and
conceptual features.1,5–7

The adaptation of multivariate techniques, such as neural
decoding, to other imaging modalities is critical for extending
these advances in cognitive neuroscience beyond the MRI
scanner and enabling research with participants who are

ineligible or not well-suited for fMRI studies (e.g., infants, vari-
ous clinical populations) as well as tasks that are simply not pos-
sible to investigate in the MR environment. In particular, infants
usually cannot be scanned while awake, with very few excep-
tions,8–10 limiting our ability to investigate the emergence of lan-
guage in the brain during the most important developmental
years. Brain imaging with functional near-infrared spectroscopy
(fNIRS) is one especially promising approach for developmen-
tal neuroscience research. fNIRS has gained popularity for its
advantages in testing infants and children, due to its tolerance
for head and body motion and its applicability outside the con-
fines of the MR environment. These unique advantages have
also enabled research on social cooperation and face-to-face
conversation.11–13

However, to date, the application of MVPA to fNIRS remains
limited. One recent paper14 described the first demonstration of
neural decoding in infants using fNIRS, based on representa-
tional similarity techniques developed for fMRI.15,16 This work
opens the door for using multivariate methods in developmental
research, such as measuring semantic representations for words
from the earliest stages of language acquisition to the adult-like
state. Such fine-grained studies of language are now common-
place in fMRI but completely untested with fNIRS.

Although fNIRS measures a very similar physiological
signal to fMRI, these techniques have important differences
that affect the amount of information they provide for neural
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decoding. Most notably, the spatial resolution of fNIRS is con-
siderably lower than fMRI, with individual channels covering
only the surface of the cortex and sampling from regions a
few centimeters in diameter. Further, fNIRS is sensitive to
hemodynamic variations in the scalp and other tissues between
the detector and the cortex. Some of this noncortical signal can
be removed with statistical techniques (such as principal com-
ponents analysis) to locate and subtract global responses, such
as heartbeat or fluctuations in blood pressure. The relatively
coarser spatial resolution (i.e., portion of the cortex covered
by each measurement channel) and poorer signal-to-noise
ratio of fNIRS compared to fMRI likely diminish the power of
fNIRS for detecting the small changes in signal that would
underlie comparisons among several semantic categories.

However, other aspects of fNIRS are very well-suited to
multivariate pattern analyses. In particular, the fNIRS image
is spatially specific. Although a single channel may cover a
few square centimeters of the scalp, we can be highly confident
that the hemodynamic response measured by that channel orig-
inates in that spatial area and is not susceptible to the volume
conduction effects that apply to most electrophysiological mea-
sures, which have also been used in adult neural decoding.17

Although magnetoencephalography (MEG) has provided
improvements in combined spatial and temporal resolution rel-
ative to electroencephalography and fMRI, respectively,18,19 it
remains very difficult to apply MEG to infants and young chil-
dren, especially in visual or audiovisual paradigms. Further,
fNIRS devices typically sample at a higher rate (10 Hz or
more) than fMRI, providing many more observations of an indi-
vidual event response curve than available from fMRI (i.e., in a
2-s time window, 20 fNIRS samples are obtained but typically
only 1 fMRI sample). Thus, on the one hand, the spatial limi-
tations of fNIRS may limit how much information is encoded in
its relatively low-dimensional data (i.e., a few dozen channels
versus thousands of voxels). On the other hand, fNIRS provides
both a large amount of data about each channel and maintains
spatial specificity.

In this study, we ask whether fNIRS data contain information
suitable for neural decoding among subjects and for decoding
based on extrinsic representational models. We present subjects
with eight different matching audiovisual pairs (i.e., a spoken
word and its corresponding picture) and attempt to identify
specific stimulus representations based either on generaliza-
tion from other subjects’ neural responses (between-subjects
decoding) or on a distributional semantic model of the meanings
of the stimulus words (semantic decoding). To achieve these
goals, we integrate recently developed tools for representational
similarity-based decoding in fMRI16,20 and similarity-based
MVPA for fNIRS.14 We thus reveal the representational contents
of the fNIRS signal encoded in multichannel response patterns,
and we aim to motivate follow-up studies that can apply these
methods to language research in infants and young children.

2 Experiment 1

2.1 Method

2.1.1 Participants

Eight adults (three males and five females) participated in a
15-min passive viewing and listening task. Participants were stu-
dents and staff recruited from the Brain and Cognitive Sciences
Department at the University of Rochester.

2.1.2 Procedure

Informed consent procedures and experimental methods were
approved by the institutional review board of the University
of Rochester. Participants were presented with eight audiovisual
stimuli, featuring a photograph of an object and simultaneous
auditory presentation of the object’s name. Participants were
asked to simply focus on the audiovisual stimuli and to think
about the meaning of that stimulus or any memory it evoked.
We directed the adult participants toward this more ecological
activity (as compared to covert feature generation used in
previous studies)1 in order to best compare with children’s
responses to the stimuli in a future experiment.

The stimuli were drawn from two broad categories (animals
and body parts) and were all objects that would be familiar to
infants, as one aim of this study is to validate the design for
infants in future work. The objects were: bunny, bear, kitty, dog,
mouth, foot, hand, and nose. Visual stimulus presentation lasted
for 3 s, with the auditory word presented immediately at onset.
A jittered 6- to 9-s interstimulus interval followed each trial.21

The interstimulus interval was composed of fireworks and a
short musical clip, designed for infant paradigms and included
for consistency between the adult data and future infant experi-
ments. See Fig. 1 for illustration. This procedure was repeated
over 12 blocks, with stimulus order randomized in each block.
Participants’ blood oxygen levels were measured using the
Hitachi ETG-4000 fNIRS system throughout the exposure.

2.1.3 fNIRS measurement and preprocessing

The fNIRS probes were arranged in two arrays: 24 channels in a
posterior 4 × 4 array approximately covering the occipital lobe
and 18 channels in a lateral 3 × 5 array over the left temporal,
parietal, and prefrontal lobes. (The lateral array typically pro-
vides 22 channels, but 4 of the anterior channels were excluded
due to a broken laser.) Because the representational similarity-
based analysis makes all of its channel-wise comparisons
within-subject, only the overall positions of the arrays needed
to be controlled across the subjects, allowing for variations in
channel positions due to head size and shape. The lateral array
was positioned directly above the left ear, approximately cen-
tered (anterior-to-posterior) over the ear and with the most ante-
rior channel just beyond the hairline. The posterior array was
centered on the back of the head, with the most inferior row
of channels just over the inion.

Preprocessing of the fNIRS data was performed in Homer2.22

We computed a principal components analysis on the optical
density data, removing the first component to reduce nonneural
physiological signals. Next, the data were bandpass filtered
(high pass: 0.01 Hz and low pass: 1.0 Hz). Oxygenated and
deoxygenated hemoglobin concentrations were computed by
Homer2 according to the modified Beer–Lambert law. The oxy-
genated hemoglobin concentration data were further processed
using custom scripts to remove motion artifacts by masking a 1-
s window around any observations that exceeded five standard
deviations of the overall mean in that channel.

Finally, we performed a channel stability analysis adapted
from fMRI decoding (voxel stability)1 to determine which chan-
nels produced reliable responses across multiple blocks, inde-
pendent of the discriminability among the stimulus classes.
This procedure reduces the dimensionality of the fNIRS data
and is intended to increase the signal-to-noise ratio by including
channels that respond reliably while excluding channels that
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contain noise or change their response magnitude over the
course of the experiment. For a given channel, the responses
for each stimulus type are correlated across blocks. Thus,
each block is represented by an n-dimension vector for n stimu-
lus types, and the correlation between block 1 and block 2 is the
Pearson r statistic between these two n-dimension vectors.
These correlations are repeated for every possible pair of blocks,
and the r values are averaged to produce a mean stability value
for that channel (further details are provided in the supplemen-
tary materials of Ref. 1).

Importantly, the channel stability procedure is independent
of the differences between experimental conditions and thus
does not need to be performed within each cross-validation
loop, i.e., it does not lead to double dipping. For each subject,
all channels are assigned stability scores, and the 50% most sta-
ble channels are retained (Fig. 2). The 50th percentile stability
threshold was applied separately to each subject, so the specific
set of channels is not constant across subjects. However, the rep-
resentational similarity-based decoding procedures described
below summarize fNIRS responses at the subject level. This
abstraction away from channel-specific data distinguishes
similarity-based decoding from other popular methods, and
it allows comparisons among the subjects’ overall patterns of

fNIRS response even when individual channels may differ in
quality or location among individual subjects.

2.1.4 Semantic model

We selected the compositional operations in semantic space
model (COMPOSES), a well-known distributional semantic
model,23 to estimate semantic representations of the eight
stimuli. The COMPOSES model describes the meanings of
the stimulus words based on an analysis of the words’ use in
large text corpora, primarily by measuring how often different
words co-occur with each other. COMPOSES produces a 400-
dimension vector representation of each word. While these
representations are unique to the model, we applied representa-
tional similarity methods to abstract this model and the fNIRS
data from their respective sources into a shared similarity space.
That is, each of the eight COMPOSES vectors (one for each
experimental stimulus) was correlated with the other seven
COMPOSES vectors to yield an 8 × 8 similarity (cross correla-
tion) matrix of Pearson’s correlation coefficients representing
how similar the eight stimuli were to each other, according
to that model [Fig. 3(c)]. An analogous 8 × 8 similarity matrix
was derived for the fNIRS data (according to a method described
below). This procedure allows the model and the fNIRS data to
be directly compared in terms of their representational similarity
structures [as captured by the 8 × 8 matrices, see Fig. 3(c)].

2.1.5 Analyses

Changes in oxygenated hemoglobin levels following each
stimulus were epoched, baseline corrected, and averaged
according to Emberson et al.’s14 MVPA procedures for fNIRS.
Epoching was performed in a time window of 6.5 to 9.0 s after
stimulus onset, following the optimal onset time identified for
integrated audiovisual events,14 and terminating before the ear-
liest onset of the next stimulus. Epoched and baseline corrected
time series data for trials of each stimulus type were averaged
across blocks to yield a mean response curve. The mean oxy-
genated hemoglobin level for this response curve was calculated
in each of the 42 channels to produce a 42-dimension response
pattern for each stimulus type. Each subject’s response patterns
were abstracted to representational similarity space by cross cor-
relating the eight 42-dimension vectors into an 8 × 8 similarity
structure.

Fig. 1 Schematic of experimental procedures. (a) Eight visual stimuli depicting common objects were
presented to participants for 3 s at a time, with immediate-onset auditory presentation of the object’s
name. (b) Each block consisted of the eight randomly ordered stimuli, followed by a jittered 6- to 9-s
interstimulus interval.

Fig. 2 Approximate positions of fNIRS probes on the left lateral and
posterior areas of the head. Red circles indicate lasers and blue
circles indicate detectors. Each channel (between a laser and detec-
tor) is marked by the number of participants (out of eight, total) for
whom it was retained as one of the top 50% most stable channels,
independent of decoding accuracy.
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These semantic model- and fNIRS response-based represen-
tational similarity structures are compared at the subject level,
decoding each subject’s fNIRS data using a group average sim-
ilarity structure (excluding that subject, i.e., leave-one-out cross-
validation) and using the semantic model. These comparisons
are calculated based on the average accuracy of all possible
two-alternative (pairwise) forced choice comparisons among
the eight stimulus classes, as typically done in fMRI neural
decoding studies.20 Decoding accuracy provides a measure of
the discriminability of the classes and the reliability of the
similarity structures that support decoding across subjects or
between the subjects and the model.

Figure 3(d) shows the strong similarities between a group-
level fNIRS model (in blue) and the semantic model (in red)
of the eight stimuli when these two structures are aligned in multi-
dimensional space. The figure is generated using classical multi-
dimensional scaling (MDS, MATLAB® function cmdscale) to
translate each 8 × 8 similarity matrix [from Fig. 3(c)] into distan-
ces between each stimulus in seven-dimensional space. After
each of these models is independently scaled to best capture
the relative similarities of the eight stimuli to one another (within
the model), the two models’ structures can be compared for over-
all alignment. In this illustration, the semantic model is rotated
through MDS space and scaled using Procrustes alignment to
find the closest possible alignment with the neural data. The first
two dimensions of these aligned structures are shown in Fig. 3(d).
MATLAB® scripts and sample data necessary to reproduce these
analyses are provided on our Github page.24

Importantly, this visualization illustrates the best possible
alignment between the observed fNIRS and model-based

structures when the correct matches for all eight classes are
known and considered simultaneously. The pairwise decoding
procedures rely only on the similarity data as shown in
Fig. 3(c) and compare only two stimuli at a time without access
to this structure-level alignment. Consequently, pairwise decod-
ing is weaker than if this higher dimensional structural align-
ment was already known.

2.2 Results

2.2.1 Between-subjects fNIRS response-based decoding

Between-subjects decoding is performed with a leave-one-sub-
ject-out cross-validation procedure, wherein each subject is iter-
atively removed from the group and compared to the averaged
group model. The group model is computed as the element-wise
mean of the remaining subjects’ representational similarity
structures (yielding an 8 × 8 group matrix). The average pair-
wise decoding accuracy in this between-subjects analysis was
0.70 [p ¼ 0.01, Fig. 3(a)], compared to chance level of 0.50.
All significance tests are based on the empirical null distribution
for randomly permuted stimulus labels.14,16,20 Null distributions
for each significance test are provided with the demonstration
code and can be regenerated using the code available on
Github. p-values are obtained by measuring the proportion of
the null distribution that is greater than or equal to the observed
accuracy.

Individual level performance was variable, ranging from 0.39
to 0.96. This variability suggests that either the individual sub-
jects’ data quality was inconsistent or some subjects’ response
patterns differed from the group. In the next analysis, we ask

Fig. 3 (a) Between-subject decoding accuracy and (b) semantic model-based decoding accuracy for
each of the eight participants. Chance level is 50%, and significance test is performed on the mean
decoding accuracy across subjects. Semantic model-based decoding accuracy of the group-level
model is also depicted. (c) Similarity matrices for the group-level fNIRS data and semantic model.
(d) Classical multidimensional scaling of group-level fNIRS and semantic model (rotated, scaled, and
overlaid).
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whether the COMPOSES semantic model explains the subjects’
fNIRS response patterns.

2.2.2 Semantic model-based decoding

The COMPOSES semantic model decoded the fNIRS data from
the stable channels with a mean accuracy of 0.66 (p ¼ 0.03)
across subjects. Figure 3(b) shows individual subjects’ decoding
accuracy based on the COMPOSES model. We also investigated
whether this result could be improved by averaging across the
eight subjects’ similarity structures to test the group model’s
semantic decoding. The semantic model decoded the group
model data with an accuracy of 0.75, a considerable gain over
the mean individual level performance, although this value did
not achieve conventional significance when tested as a single-
point observation. Instead, we return to this group model in the
next experiment.

Finally, we performed some additional analyses that explore
these results in greater depth, beyond the scope of this paper. We
contrast the roles of within-category (e.g., foot versus nose) and
between-category (e.g., foot versus kitty) comparisons to decod-
ing accuracy, and we compare the performance of a second dis-
tributional semantic model to the COMPOSES model reported
here. These supplemental materials are available for download
on our Github page.

2.3 Discussion

Experiment 1 illustrates neural decoding of fNIRS data using a
representational similarity-based method. The similarity struc-
tures used by this method allowed us to compare across different
subjects’ fNIRS data, to compare individual subjects’ fNIRS
data to a semantic model, and to combine subjects’ patterns
into a group model, despite individual variation in channel loca-
tion and data quality. All of these comparisons are made pos-
sible by the fact that similarity-based multivariate pattern
analyses abstract the individual’s neural data out of their unique
anatomical space and into similarity space.

The high between-subjects decoding accuracy illustrates the
effectiveness of using these similarity structures to overcome the
limitations of fNIRS imaging and to find reliable stimulus-de-
pendent response patterns that are preserved among individual
subjects. This finding indicates that a shared set of representa-
tions for the eight stimuli is encoded in the fNIRS data for these
subjects, and the across-subject reliability is sufficient to predict
the stimulus labels of a given subject based on a group model of
the other seven subjects.

A significant portion of these fNIRS patterns was also
explained by specific properties of the stimulus, as indicated
by the success of the semantic model at decoding both individ-
ual subjects’ neural response patterns and decoding the group-
level model. In the next experiment, we ask whether this
group-level fNIRS response pattern can be replicated with addi-
tional groups of participants, whether these groups can also be
explained by the semantic model, and whether the two fNIRS
arrays may carry different types of information.

3 Experiment 2
In the foregoing experiment, we demonstrated that fNIRS data
contained neural response patterns that were (1) preserved
across subjects, (2) decodable by a semantic model, and (3) can
be meaningfully combined across subjects to improve signal-to-
noise ratio in a group-level model. In this experiment, we build

upon these findings to further test the reliability of the group-
level fNIRS response patterns by using between-groups decod-
ing (analogous to between-subjects decoding) and by applying
the semantic model to these group models.

Further, we explore the possibility that different types of
information are encoded in different fNIRS channels. Although
exact channel placement varies across participants, the similar-
ity-based metrics allow us to compare on a larger scale: array-
level response patterns should be strongly preserved among sub-
jects because the arrays were consistently placed over compa-
rable anatomical regions and contain several channels each from
which to perform decoding analyses.

3.1 Method

3.1.1 Participants

Two additional groups of eight adults each (group 2: five males
and five females and group 3: two males and six females) par-
ticipated in the same 15-min passive viewing and listening task
as in experiment 1. Participants in group 2 were undergraduate
students from the University of Rochester Brain and Cognitive
Sciences subject pool, recruited approximately four months after
group 1 (the participants in experiment 1). Participants in group
3 were graduate students and staff from the Brain and Cognitive
Sciences Department, the University of Rochester, recruited
approximately seven months after group 1.

3.1.2 fNIRS measurement and preprocessing

The fNIRS probes were arranged according to the same guide-
lines as experiment 1, with one array covering the posterior
region and a second array over the left lateral region.
Preprocessing of the fNIRS data also followed the same proto-
cols as experiment 1. In this experiment, all individual subject-
level fNIRS representational similarity structures were averaged
to produce new group models for group 1 (the eight participants
of experiment 1), group 2, and group 3. As demonstrated in
experiment 1, this averaging amplifies the fNIRS patterns shared
across individual subjects while reducing the influence of indi-
vidual differences or measurement error. Further, no channel sta-
bility analysis was performed for the individual arrays to
maintain the number of channels (posterior: 24 and lateral:
18) used in the analysis with both arrays.

3.1.3 Analyses

In this experiment, we compare group-level models in the
combined arrays, as well as separately for each individual
array. Each group-level model was estimated by averaging
the representational similarity structures for the eight subjects
into a single group-level structure (8 × 8 matrix). We performed
both between-groups decoding and semantic model-based
decoding on each group following the same procedures
described in experiment 1, applied to the group-level data
instead of the individual subject data. Because the same tests
(between-groups decoding and model-based decoding) were
performed three times over the various array configurations,
results of these tests were adjusted using false discovery rate
(FDR).25,26
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3.2 Results

3.2.1 Decoding with both arrays

In the leave-one-out analysis between groups (1 versus 2 and 3,
2 versus 1 and 3, and 3 versus 1 and 2), mean decoding accuracy
for the combined arrays was 0.60 (p-adj ¼ 0.36). The semantic
model, however, decoded the groups with a mean accuracy of
0.73 (p-adj ¼ 0.045), as shown in Fig. 4(a).

3.2.2 Posterior array decoding

In the leave-one-out analysis between groups, mean decoding
accuracy for the posterior array was 0.43 (p-adj ¼ 0.75). The
semantic model, however, decoded the groups with a mean
accuracy of 0.73 (p-adj ¼ 0.045), as shown in Fig. 4(b).

3.2.3 Lateral array decoding

In the leave-one-out analysis between groups, mean decoding
accuracy was 0.87 (p-adj ¼ 0.006). The semantic model did
not show consistent performance, failing to decode the three
groups above chance level, with a mean accuracy of 0.49
[p-adj ¼ 0.54, see Fig. 4(c)].

3.2.4 Group versus group decoding

Finally, we return to the between-groups decoding task to clarify
the contributions of each group to the leave-one-out analyses
performed in the prior sections. We repeated the between-groups
decoding for each possible pair of groups (1 versus 2, 1 versus 3,
and 2 versus 3) to determine whether any one group stood out as
divergent from the other two.

Table 1 shows these between-group decoding accuracies for
each array. Accuracies are presented as individual observations

(rather than estimates of a mean) and are thus not significance
tested. All groups decoded each other with high accuracy in the
lateral array, consistent with the foregoing leave-one-out analy-
sis (Sec. 3.2.3). Results in the posterior array were more mixed,
ranging from 0.21 (group 1 versus 2) to 0.64 (group 1 versus 3).
We tentatively interpret these results below.

3.3 Discussion

This experiment aimed to replicate the strong group-level
semantic decoding observed in experiment 1, where a group
model successfully decoded fNIRS response patterns at the indi-
vidual subject level, and compare the fNIRS response patterns
across multiple groups. We used an approach analogous to the
subject-level comparisons performed in experiment 1 but sub-
stituting the group-level averages. When using both the pos-
terior and lateral arrays, between-group decoding did not
significantly exceed chance, even though the average semantic
decoding of each group was significant. There are some reasons
that between-groups decoding may have failed in this case. First,
the effective sample size of n ¼ 3 sets a very high bar for stat-
istical significance. Although this size would not work for
parametric testing, cross validation can be performed and sig-
nificance tested for three observations (that is, the three group-
level models) using an empirical null distribution. In this case,
the mean accuracy necessary for significance at p < 0.05 would
have been 0.70, even before FDR correction.

Further, it is important to note that in leave-one-out cross-val-
idation, the decoding accuracy of a given observation (in this
case, a group) is a function of both the pattern in that observation
and the average pattern from the remaining observations. Thus,
it may be the case that group 1 produced fNIRS response pat-
terns that uniquely differed from groups 2 and 3, but it is also
plausible that groups 2 and 3 yielded lower-quality data them-
selves and in combination failed to decode group 1. We lean
toward this latter explanation for a simple, practical reason:
the posterior array on our fNIRS measurement device was reca-
librated for another study after completion of group 1 data col-
lection, and this recalibration appeared to have an adverse effect
on the data quality. The follow-up group versus group analysis,
which showed that groups 2 and 3 did not decode each other any
better in either array than they performed against group 1, sup-
ports this explanation. Further, strong between-groups decoding
was observed in the lateral array, which was not recalibrated
among groups, in both the leave-one-out and the group versus
group analyses.

Fig. 4 Between-group and semantic model-based decoding for each of the three groups and mean per-
formance across groups. Whole array, posterior array only, and lateral array only were tested separately
to compare relative performance of each. n.s. means not significant and * means p-adj < 0.05.

Table 1 Group versus group decoding accuracies for lateral and pos-
terior arrays.

Group 1 Group 2 Group 3

Group 1 — 0.21 0.64 Posterior array

Group 2 0.82 — 0.50

Group 3 0.79 0.75 —

Lateral array
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Both between-groups and semantic model-based decoding
were successful in individual subsets of channels (the two
arrays) but not in the same subsets, highlighting a potentially
important dissociation. Surprisingly, the lateral array’s between-
group reliability did not translate into significant above-chance
decoding with the semantic model. In contrast, the posterior
array was significantly decoded by the semantic model but
did not decode among groups. This result raises the question
of what type of information the semantic model is decoding,
which is addressed at greater length in Sec. 4.

4 General Discussion
The experiments described in this study provide strong evidence
for the representation of highly discriminable response patterns
to multiple stimuli, encoded in about 20 channels of fNIRS data.
Experiment 1 demonstrated that multivariate pattern analyses
can be successfully applied to fNIRS data collected in adults
to decode a multiclass, passive, and infant-friendly audiovisual
paradigm. Specifically, we combined channel selection proce-
dures with representational similarity-based models to decode
stimulus categories from fNIRS signals collected over the pos-
terior and left-lateral areas of the cortex, with relatively few rep-
etitions of each stimulus category (12 presentations of each
stimulus). Experiment 2 further provided evidence for the rep-
licability and robustness of these findings. In particular, individ-
ual subject-level representations were successfully combined to
produce group models that could be decoded with high accu-
racy. Experiment 2 also revealed a curious dissociation in the
informational content of the posterior and lateral arrays.
Signals captured by the left lateral probes (covering aspects
of the left temporal cortex) discriminated among the stimuli
from the three different participant groups with an average
between-groups pairwise decoding accuracy of over 80%.
Signals from the posterior probe (covering aspects of the occipi-
tal cortex) were decoded using the semantic model in each of the
three groups with an average accuracy of over 70%.

It is unclear why a signal in the posterior array would be pre-
dictable by the semantic model but not shared among three
groups of subjects that the semantic model explains. One
explanation may be that the posterior array calibration errors
discussed in experiment 2 (or additional measurement errors
due to channel placement, hair density, or poor contact between
the scalp and probes) would be doubled in any comparison of
two groups’ fNIRS data. Thus between-group decoding would
be prohibitively difficult, while the group structures still suffi-
ciently correlate with the (much stronger) semantic model to
allow model-based decoding.

The very strong between-group decoding in the lateral array
suggests that important representational information exists in
this region, but this information may not be adequately
explained by the present semantic model. Previous fMRI decod-
ing research has found that both occipital and left temporal
regions are significantly decoded by a distributional semantic
model,1 only the latter of which is replicated in the present
study. One possibility is that semantic information in temporal
cortical regions is represented at a spatial resolution smaller than
the one available to fNIRS, as suggested by the high-density
encoding of face-identity information in the anterior temporal
lobe (in contrast to the coarse representations in fusiform
gyrus) observed by Kriegeskorte et al.27

This latter finding, in particular, highlights the importance of
exploring additional representational models to explain fNIRS

data in future research. Neural decoding of printed words in
fMRI has successfully combined distributional semantic data
with vision-based models of objects to improve decoding
accuracy.5 An analogous approach could be applied to fNIRS to
both enhance decoding accuracy and to help distinguish the
contributions from these sources of information. In this study,
variance in the fNIRS signal that is explained by the semantic
model might be equally explained by a visual model. Simply
put, words with similar meanings often refer to objects that
also look similar. Particularly, for the eight words depicted in
our experiments, the four animals (dog, kitty, bunny, and
bear) were far more similar in meaning to each other than to
the four body parts (mouth, nose, hand, and foot). A casual
examination of the stimuli suggests that a model of visual sim-
ilarity would reach similar conclusions. Studies integrating a
range of different visual, semantic, and other explanatory mod-
els may help to disentangle these components of the fNIRS
response.

Despite these limitations, the present results represent the
first link between the functional brain response patterns mea-
sured by fNIRS and an extrinsic model (in this case, a model
based on distributional semantics), and the first successful
decoding of semantic information in the fNIRS signal. This
demonstration establishes a few important precedents for multi-
variate pattern analyses applied to fNIRS data: (1) multivariate
patterns describing the distributed fNIRS response are preserved
across subjects, allowing decoding between individuals and
combination of individuals into group-level models to improve
signal-to-noise ratio when very few trials are available per
subject (e.g., studies with infants). (2) These regularities can
be explained, in part, by extrinsic representational models,
such as the COMPOSES distributional semantic model.
(3) Representational similarity-based approaches to fNIRS
decoding provide one effective means to bridge the gap among
subjects and between model and neural data, even when place-
ment and quality of individual channels varies.

The extension of these methods to fNIRS expands the ana-
lytic tools available to the field and facilitates direct, theoretical
inferences about the informational content of neural signals.
Further, applying multivariate pattern analyses and model-
based decoding to fNIRS data will allow comparisons that
are currently impossible with analogous methods for fMRI.
Because fNIRS is a motion-tolerant and silent measure, neural
data can be obtained from infants, children, and adults using the
same techniques and making direct comparisons of the represen-
tational content among these groups.
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